BY(ji)c(din)õĶ߅@(g)Aă(ni)n߅
ƽ(jng)^(gu)c(din)A" />
A½ĞλY(ji)(li)Д(sh)W(xu)ԇ?yn)ҪõĔ?sh)W(xu)ʽϣԎλ
137 шAֳn(n≥3):
BY(ji)c(din)õĶ߅@(g)Aă(ni)n߅
ƽ(jng)^(gu)c(din)AооĽc(din)c(din)Ķ߅@(g)An߅
138 κ߅ζһ(g)ӈAһ(g)(ni)ЈA@ɂ(g)AͬĈA
139n߅εÿ(g)(ni)Ƕ(n-2)×180°/n
140 n߅εİ돽߅ľn߅ηֳ2n(g)ȫȵֱ
141n߅εesn=pnrn/2 pʾn߅εL(zhng)
142e√3a/4 aʾ߅L(zhng)
143һ(g)c(din)?ch)k(g)n߅εĽ@Щǵĺ͑(yng)
360°k×(n-2)180°/n=360°(n-2)(k-2)=4
144L(zhng)Ӌ(j)㹫ʽl=nأr/180
145eʽs=nأr2/360=lr/2
146(ni)оL(zhng)= d-(r-r) оL(zhng)= d-(r+r)
ʽ(li)
ʽ_(d)ʽ
˷cʽֽ a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2)
Dzʽ |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
һԪη̵Ľ -b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a
cϵ(sh)P(gun)ϵ X1+X2=-b/a X1*X2=c/a עf_(d)
Єeʽ b2-4a=0 עȵăɌ(sh)
b2-4ac>0 עһ(g)(sh)
b2-4ac<0 עйܗ(f)(sh)
Ǻ(sh)ʽ
ɽǺʽ
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
ǹʽ
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
ǹʽ
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
o(w)P(gun)Ϣ |
AMBAӖ(xn) |
һƪ 俼2015mba(lin)-ȫMBA(sh)W(xu)ؕ(hu)ʽ7 A¿Y(ji) |